Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 379
Filtrar
1.
Biochemistry ; 63(6): 725-732, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38450612

RESUMO

Schwann cells (SCs) undergo phenotypic transformation and then orchestrate nerve repair following a peripheral nervous system injury. The low-density lipoprotein receptor-related protein-1 (LRP1) is significantly upregulated in SCs in response to acute injury, activating cJun and promoting SC survival. Matrix-metalloproteinase-9 (MMP-9) is an LRP1 ligand that binds LRP1 through its hemopexin domain (PEX) and activates SC survival signaling and migration. To identify novel peptide mimetics within the hemopexin domain of MMP-9, we examined the crystal structure of PEX, synthesized four peptides, and examined their potential to bind and activate LRP1. We demonstrate that a 22 amino acid peptide, peptide 2, was the only peptide that activated Akt and ERK1/2 signaling in SCs, similar to a glutathione s-transferase (GST)-fused holoprotein, GST-PEX. Intraneural injection of peptide 2, but not vehicle, into crush-injured sciatic nerves activated cJun greater than 2.5-fold in wild-type mice, supporting that peptide 2 can activate the SC repair signaling in vivo. Peptide 2 also bound to Fc-fusion proteins containing the ligand-binding motifs of LRP1, clusters of complement-like repeats (CCRII and CCRIV). Pulldown and computational studies of alanine mutants of peptide 2 showed that positively charged lysine and arginine amino acids within the peptide are critical for stability and binding to CCRII. Collectively, these studies demonstrate that a novel peptide derived from PEX can serve as an LRP1 agonist and possesses qualities previously associated with LRP1 binding and SC signaling in vitro and in vivo.


Assuntos
Hemopexina , Metaloproteinase 9 da Matriz , Camundongos , Animais , Hemopexina/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Ligantes , Transdução de Sinais/fisiologia , Peptídeos/farmacologia , Peptídeos/metabolismo , Células de Schwann/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo
2.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069257

RESUMO

Hemolytic disorders, like malaria and sickle cell disease (SCD), are responsible for significant mortality and morbidity rates globally, specifically in the Americas and Africa. In both malaria and SCD, red blood cell hemolysis leads to the release of a cytotoxic heme that triggers the expression of unique inflammatory profiles, which mediate the tissue damage and pathogenesis of both diseases. MicroRNAs (miRNAs), such as miR-451a and let-7i-5p, contribute to a reduction in the pro-inflammatory responses induced by circulating free hemes. MiR-451a targets both IL-6R (pro-inflammatory) and 14-3-3ζ (anti-inflammatory), and when this miRNA is present, IL-6R is reduced and 14-3-3ζ is increased. Let-7i-5p targets and reduces TLR4, which results in anti-inflammatory signaling. These gene targets regulate inflammation via NFκB regulation and increase anti-inflammatory signaling. Additionally, they indirectly regulate the expression of key heme scavengers, such as heme-oxygenase 1 (HO-1) (coded by the HMOX1 gene) and hemopexin, to decrease circulating cytotoxic heme concentration. MiRNAs can be transported within extracellular vesicles (EVs), such as exosomes, offering insights into the mechanisms of mitigating heme-induced inflammation. We tested the hypothesis that miR-451a- or let-7i-5p-loaded artificial EVs (liposomes) will reduce heme-induced inflammation in brain vascular endothelial cells (HBEC-5i, ATCC: CRL-3245) and macrophages (THP-1, ATCC: TIB-202) in vitro. We completed arginase and nitric oxide assays to determine anti- and pro-inflammatory macrophage presence, respectively. We also assessed the gene expression of IL-6R, TLR4, 14-3-3ζ, and NFκB by RT-qPCR for both cell lines. Our findings revealed that the exposure of HBEC-5i and THP-1 to liposomes loaded with miR-451a or let-7i-5p led to a reduced mRNA expression of IL-6R, TLR4, 14-3-3ζ, and NFκB when treated with a heme. It also resulted in the increased expression of HMOX1 and hemopexin. Finally, macrophages exhibited a tendency toward adopting an anti-inflammatory differentiation phenotype. These findings suggest that miRNA-loaded liposomes can modulate heme-induced inflammation and can be used to target specific cellular pathways, mediating inflammation common to hematological conditions, like malaria and SCD.


Assuntos
Anemia Falciforme , Malária , MicroRNAs , Humanos , MicroRNAs/metabolismo , Hemólise , Lipossomos/metabolismo , Heme/metabolismo , Células Endoteliais/metabolismo , Hemopexina/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Proteínas 14-3-3/metabolismo , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Inflamação/genética , Inflamação/metabolismo , Anti-Inflamatórios/metabolismo , Malária/metabolismo
3.
Front Immunol ; 14: 1274333, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022615

RESUMO

It is now understood that hemolysis and the subsequent release of heme into circulation play a critical role in driving the progression of various diseases. Hemopexin (HPX), a heme-binding protein with the highest affinity for heme in plasma, serves as an effective antagonist against heme toxicity resulting from severe acute or chronic hemolysis. In the present study, changes in HPX concentration were characterized at different stages of hemolytic diseases, underscoring its potential as a biomarker for assessing disease progression and prognosis. In many heme overload-driven conditions, such as sickle cell disease, transfusion-induced hemolysis, and sepsis, endogenous HPX levels are often insufficient to provide protection. Consequently, there is growing interest in developing HPX therapeutics to mitigate toxic heme exposure. Strategies include HPX supplementation when endogenous levels are depleted and enhancing HPX's functionality through modifications, offering a potent defense against heme toxicity. It is worth noting that HPX may also exert deleterious effects under certain circumstances. This review aims to provide a comprehensive overview of HPX's roles in the progression and prognosis of hematological diseases. It highlights HPX-based clinical therapies for different hematological disorders, discusses advancements in HPX production and modification technologies, and offers a theoretical basis for the clinical application of HPX.


Assuntos
Anemia Falciforme , Hemopexina , Humanos , Hemopexina/metabolismo , Hemólise , Heme/metabolismo
4.
Clin Transl Sci ; 16(12): 2729-2743, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37899696

RESUMO

Free heme is released from hemoproteins during hemolysis or ischemia reperfusion injury and can be pro-inflammatory. Most studies on nephrotoxicity of hemolysis-derived proteins focus on free hemoglobin (fHb) with heme as a prosthetic group. Measurement of heme in its free, non-protein bound, form is challenging and not commonly used in clinical routine diagnostics. In contrast to fHb, the role of free heme in acute kidney injury (AKI) after cardiopulmonary bypass (CPB) surgery is unknown. Using an apo-horseradish peroxidase-based assay, we identified free heme during CPB surgery as predictor of AKI in patients undergoing cardiac valve replacement (n = 37). Free heme levels during CPB surgery correlated with depletion of hemopexin (Hx), a heme scavenger-protein. In mice, the impact of high levels of circulating free heme on the development of AKI following transient renal ischemia and the therapeutic potential of Hx were investigated. C57BL/6 mice were subjected to bilateral renal ischemia/reperfusion injury for 15 min which did not cause AKI. However, additional administration of free heme in this model promoted overt AKI with reduced renal function, increased renal inflammation, and reduced renal perfusion on functional magnetic resonance imaging. Hx treatment attenuated AKI. Free heme administration to sham operated control mice did not cause AKI. In conclusion, free heme is a predictor of AKI in CPB surgery patients and promotes AKI in transient renal ischemia. Depletion of Hx in CPB surgery patients and attenuation of AKI by Hx in the in vivo model encourage further research on Hx therapy in patients with increased free heme levels during CPB surgery.


Assuntos
Injúria Renal Aguda , Hemopexina , Traumatismo por Reperfusão , Animais , Humanos , Camundongos , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Ponte Cardiopulmonar/efeitos adversos , Heme , Hemoglobinas/metabolismo , Hemólise , Hemopexina/química , Hemopexina/metabolismo , Isquemia/complicações , Rim/metabolismo , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/etiologia
5.
Diabetes ; 72(12): 1841-1852, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37722135

RESUMO

Hemopexin (HPX) is overexpressed in the retina of patients with diabetes and induces the breakdown of the blood-retinal barrier in vitro. The aim of this study was to evaluate whether HPX blockade by specific antibodies (aHPX) could avoid vascular leakage in vivo and microvascular angiogenesis in vitro and ex vivo. For this purpose, the effect of intravitreal (IVT) injections of aHPX on vascular leakage was evaluated in db/db mice and rats with streptozotocin-induced diabetes using the Evans Blue method. Retinal neurodegeneration and inflammation were also evaluated. The antiangiogenic effect of aHPX on human retinal endothelial cells (HRECs) was tested by scratch wound healing and tube formation using standardized methods, as well as by choroidal sprouting assays from retinal explants obtained in rats. We found that IVT injection of aHPX significantly reduced vascular leakage, retinal neurodegeneration, and inflammation. In addition, treatment with aHPX significantly reduced HREC migration and tube formation induced by high glucose concentration and suppressed choroidal sprouting even after vascular endothelial growth factor stimulation, with this effect being higher than obtained with bevacizumab. The antipermeability and antiangiogenic effects of IVT injection of aHPX suggest the blockade or inhibition of HPX as a new strategy for the treatment of advanced stages of diabetic retinopathy. ARTICLE HIGHLIGHTS: Hemopexin (HPX) is the best-characterized permeability factor in steroid-sensitive nephrotic syndrome. We have previously reported that HPX is overexpressed in the retina of patients with diabetes and induces the breakdown of the blood-retinal barrier in vitro. Here, we report that intravitreal injection of anti-HPX antibodies significantly reduces vascular leakage, retinal neurodegeneration, and inflammation in diabetic murine models and that the immunoneutralization of HPX exerts a significant antiangiogenic effect in vitro and in retinal explants. The blockade of HPX can be considered as a new therapy for advanced stages of diabetic retinopathy.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Ratos , Humanos , Camundongos , Animais , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Hemopexina/metabolismo , Hemopexina/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Retina/metabolismo , Barreira Hematorretiniana/metabolismo , Anticorpos/farmacologia , Diabetes Mellitus Experimental/metabolismo , Inflamação/metabolismo
6.
Exp Biol Med (Maywood) ; 248(13): 1103-1111, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37452705

RESUMO

Heme is a fundamental molecule for several biological processes, but when released in the extracellular space such as in hemolytic diseases, it can be toxic to cells and tissues. Hemopexin (HPX) is a circulating protein responsible for removing free heme from the circulation, whose levels can be severely depleted in conditions such as sickle cell diseases. Accordingly, increasing HPX levels represents an attractive strategy to mitigate the deleterious effects of heme in these conditions. Gene transfer of liver-produced proteins with adeno-associated virus (AAV) has been shown to be an effective and safety strategy in animal and human studies mainly in hemophilia. Here, we report the feasibility of increasing HPX levels using an AAV8 vector expressing human HPX (hHPX). C57Bl mice were injected with escalating doses of our vector, and expression was assessed by enzyme immunoassay (ELISA), Western blot, and quantitative polymerase chain reaction (qPCR). In addition, the biological activity of transgenic hHPX was confirmed using two different models of heme challenge consisting of serial heme injections or phenylhydrazine-induced hemolysis. Sustained expression of hHPX was confirmed for up to 26 weeks in plasma. Expression was dose-dependent and not associated with clinical signs of toxicity. hHPX levels were significantly reduced by heme infusions and phenylhydrazine-induced hemolysis. No clinical toxicity or laboratory signs of liver damage were observed in preliminary short-term heme challenge studies. Our results confirm that long-term expression of hHPX is feasible and safe in mice, even in the presence of heme overload. Additional studies are needed to explore the effect of transgenic HPX protein in animal models of chronic hemolysis.


Assuntos
Heme , Hemopexina , Camundongos , Humanos , Animais , Hemopexina/genética , Hemopexina/metabolismo , Hemopexina/farmacologia , Hemólise , Estudos de Viabilidade , Fatores de Transcrição , Fenil-Hidrazinas
7.
Mol Cell Proteomics ; 22(6): 100566, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37169079

RESUMO

The secreted metalloproteases ADAMTS9 and ADAMTS20 are implicated in extracellular matrix proteolysis and primary cilium biogenesis. Here, we show that clonal gene-edited RPE-1 cells in which ADAMTS9 was inactivated, and which constitutively lack ADAMTS20 expression, have morphologic characteristics distinct from parental RPE-1 cells. To investigate underlying proteolytic mechanisms, a quantitative terminomics method, terminal amine isotopic labeling of substrates was used to compare the parental and gene-edited RPE-1 cells and their medium to identify ADAMTS9 substrates. Among differentially abundant neo-amino (N) terminal peptides arising from secreted and transmembrane proteins, a peptide with lower abundance in the medium of gene-edited cells suggested cleavage at the Tyr314-Gly315 bond in the ectodomain of the transmembrane metalloprotease membrane type 1-matrix metalloproteinase (MT1-MMP), whose mRNA was also reduced in gene-edited cells. This cleavage, occurring in the MT1-MMP hinge, that is, between the catalytic and hemopexin domains, was orthogonally validated both by lack of an MT1-MMP catalytic domain fragment in the medium of gene-edited cells and restoration of its release from the cell surface by reexpression of ADAMTS9 and ADAMTS20 and was dependent on hinge O-glycosylation. A C-terminally semitryptic MT1-MMP peptide with greater abundance in WT RPE-1 medium identified a second ADAMTS9 cleavage site in the MT1-MMP hemopexin domain. Consistent with greater retention of MT1-MMP on the surface of gene-edited cells, pro-MMP2 activation, which requires cell surface MT1-MMP, was increased. MT1-MMP knockdown in gene-edited ADAMTS9/20-deficient cells restored focal adhesions but not ciliogenesis. The findings expand the web of interacting proteases at the cell surface, suggest a role for ADAMTS9 and ADAMTS20 in regulating cell surface activity of MT1-MMP, and indicate that MT1-MMP shedding does not underlie their observed requirement in ciliogenesis.


Assuntos
Hemopexina , Metaloproteinase 14 da Matriz , Membrana Celular/metabolismo , Hemopexina/metabolismo , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Peptídeos/metabolismo , Proteólise , Humanos
8.
Exp Biol Med (Maywood) ; 248(10): 897-907, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36941786

RESUMO

Intravascular hemolysis results in the release of cell-free hemoglobin and heme in plasma. In sickle cell disease, the fragility of the sickle red blood cell leads to chronic hemolysis, which can contribute to oxidative damage and activation of inflammatory pathways. The scavenger proteins haptoglobin and hemopexin provide pathways to remove hemoglobin and heme, respectively, from the circulation. Heme also intercalates in membranes of blood cells and endothelial cells in the vasculature and associates with other plasma components such as albumin and lipoproteins. Hemopexin has a much higher affinity and can strip heme from the other pools and detoxify plasma from cell-free circulatory heme. However, due to chronic hemolysis, hemopexin is depleted in individuals with sickle cell disease. Thus, cell-free unbound heme is expected to accumulate in plasma. We developed a methodology for the accurate quantification of the fraction of heme, which is pathologically relevant in sickle cell disease, that does not appear to be sequestered to a plasma compartment. Our data show significant variation in the concentration of unbound heme, and rather unexpectedly, the size of the unbound fraction does not correlate to the degree of hemolysis, as measured by the concentration of bound heme. Very high heme concentrations (>150 µM) were obtained in some plasma with unbound concentrations that were several fold lower than in plasma with much lower hemolysis (<50 µM). These findings underscore the long-term effects of chronic hemolysis on the blood components and of the disruption of the essential equilibrium between release of hemoproteins/heme in the circulation and adaptative response of the scavenging/removal mechanisms. Understanding the clinical implications of this loss of response may provide insights into diagnostic and therapeutic targets in patients with sickle cell disease.


Assuntos
Anemia Falciforme , Heme , Humanos , Hemólise , Hemopexina/metabolismo , Hemopexina/farmacologia , Hemopexina/uso terapêutico , Células Endoteliais/metabolismo , Anemia Falciforme/tratamento farmacológico , Hemoglobinas
9.
Transfusion ; 63(3): 586-600, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36752125

RESUMO

BACKGROUND: The formation of extracellular vesicles (EVs) occurs during cold storage of RBCs. Transfusion of EVs may contribute to adverse responses in recipients receiving RBCs. However, EVs are poorly characterized with limited data on whether distinct vesicles are formed, their composition, and potential biological effects. STUDY DESIGN AND METHODS: Stored RBC-derived EVs were purified using protocols that separate larger microvesicle-like EVs (LEVs) from smaller exosome-like vesicles (SEVs). Vesicles were analyzed by electron microscopy, content of hemoglobin, heme, and proteins (by mass spectrometry), and the potential to mediate lipid peroxidation and endothelial cell permeability in vitro. RESULTS: SEVs were characterized by having an electron-dense double membrane whereas LEVs had more uniform electron density across the particles. No differences in hemoglobin nor heme levels per particle were observed, however, due to smaller volumes, SEVs had higher concentrations of oxyHb and heme. Both particles contained antioxidant proteins peroxiredoxin-2 and copper/zinc superoxide dismutase, these were present in higher molecular weight fractions in SEVs suggesting either oxidized proteins are preferentially packaged into smaller vesicles and/or that the environment associated with SEVs is more pro-oxidative. Furthermore, total glutathione (GSH + GSSG) levels were lower in SEVs. Both EVs mediated oxidation of liposomes that were prevented by hemopexin, identifying heme as the pro-oxidant effector. Addition of SEVs, but not LEVs, induced endothelial permeability in a process also prevented by hemopexin. CONCLUSION: These data show that distinct EVs are formed during cold storage of RBCs with smaller particles being more likely to mediate pro-oxidant and inflammatory effects associated with heme.


Assuntos
Vesículas Extracelulares , Hemopexina , Humanos , Hemopexina/análise , Hemopexina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vesículas Extracelulares/metabolismo , Eritrócitos/metabolismo , Hemoglobinas/análise , Heme/metabolismo
10.
Exp Biol Med (Maywood) ; 248(4): 309-316, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36740756

RESUMO

Heme-oxygenase 1 (HO-1) is an enzyme with well-known anti-inflammatory and antioxidant properties, whose levels have been previously associated with disease severity in the context of sterile and infectious diseases. Moreover, the heme/HO-1 pathway has been associated with prothrombotic changes in other diseases. Accordingly, the potential of modulating HO-1 levels for the treatment of COVID-19 was extensively speculated during the COVID-19 pandemic, but very few actual data were generated. The aim of our study was to explore the association of HO-1, heme, and hemopexin (HPX) levels with COVID-19 severity and with markers of inflammation and coagulation activation. The study was conducted in 30 consecutive patients with COVID-19 admitted due to hypoxemia, and 30 healthy volunteers matched by sex, age, and geographic region. HO-1 and HPX levels were measured by enzyme immunoassay (ELISA) and heme levels were measured by a colorimetric method. A comprehensive panel of coagulation and fibrinolysis activation was also used. Patients with COVID-19 presented increased levels of HO-1 when compared to controls (5741 ± 2696 vs 1953 ± 612 pg/mL, respectively, P < 0.0001), as well as a trend toward increased levels of HPX (3.724 ± 0.880 vs 3.254 ± 1.022 mg/mL, respectively; P = 0.06). In addition, HO-1 and HPX levels reduced from admission to day + 4. HO-1 levels were associated with duration of intensive care unit stay and with several markers of coagulation activation. In conclusion, modulation of HO-1 could be associated with the prothrombotic state observed in COVID-19, and HO-1 could also represent a relevant biomarker for COVID-19. New independent studies are warranted to explore and expand these findings.


Assuntos
COVID-19 , Heme , Humanos , Biomarcadores , Hemopexina/metabolismo , Pandemias , Gravidade do Paciente , Heme Oxigenase-1/metabolismo
11.
Cell Cycle ; 22(6): 645-665, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36218263

RESUMO

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease, while respiratory infections can elicit exacerbations in COPD patients to mediate increased mortality. Administration of Tanshinones (TS) derivatives has been demonstrated to protect against cigarette smoking (CS) and lipopolysaccharide (LPS)-induced COPD progression. However, the underlying molecular mechanisms and the roles of TS in mitigating the severity of viral-mediated exacerbations of COPD have not been elucidated. Here, we found that TS treatments significantly attenuated lung function decline, inflammatory responses and oxidative stress in CS and LPS-induced COPD mice. Subsequent RNA-seq analysis revealed significantly upregulated Hemopexin expression and enriched interferons (IFNs) signaling pathways in lung tissues of COPD mice upon TS treatments. Moreover, TS administration demonstrated Hemopexin-dependent beneficial roles in BEAS-2B lung cells and RAW264.7 macrophages, which was associated with the suppression of oxidative stress and ERK, NF-κB, and NLRP3 inflammasome signaling pathways-mediated inflammation. Furthermore, TS promoted IFN signaling and rescued impaired antiviral responses in CS and LPS-exposed lung cells that were infected by influenza virus. Notably, hemopexin over-expression in lung cells and macrophages recapitulated the pharmacological activities of TS. Taken together, these results indicate that TS administration is a promising and potential therapeutic strategy for treating COPD and preventing COPD exacerbations.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Camundongos , Animais , Hemopexina/metabolismo , Hemopexina/uso terapêutico , Fumar Cigarros/efeitos adversos , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Macrófagos/metabolismo , Antivirais/uso terapêutico
12.
Int J Biol Macromol ; 227: 340-353, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36529221

RESUMO

Warm temperature acclimation-related 65-kDa proteins (Wap65s) are fish plasma acute-phase glycoproteins homologous to hemopexin with high affinity and clearance for heme. The study characterized Mswap65-1 and Mswap65-2 genes in Micropterus salmoides. Structural analysis showed MsWap65s contained conserved heme-binding sites. MsWap65-1 had a chloride-binding site similar to hemopexin, while MsWap65-2 had an additional calcium-binding site. Phylogenetic and Ka/Ks analysis showed that fish Wap65s were evolutionarily conserved and underwent strong purifying selection. Functional divergence analysis indicated that fish Wap65-2 retained the putative function of ancestral Wap65, while Wap65-1 underwent neofunctional differentiation. QPCR showed Mswap65s were predominantly expressed in liver, but prolonged hyperthermy inhibited Mswap65-2 expression. Mswap65-2 expression was up-regulated in liver and spleen after Nocardia seriolae infection, while Mswap65-1 was down-regulated. MsWap65-2 may be associated with pathogenesis and play potential role in pathogen resistance. LMBV infection resulted in both significant downregulation of Mswap65s were both significantly down-regulated, with differences observed between sexes. We speculated the immune system might suppress expression after viral infection. Exogenous rMsWap65s were prepared, and injection of rMsWap65s alleviated phenylhydrazine-induced hemolysis and inhibited increases in heme, complement C3 and inflammatory symptoms. Our results contribute to an advanced understanding of the functions and mechanisms of MsWap65s in stress resistance.


Assuntos
Bass , Animais , Temperatura , Sequência de Aminoácidos , Hemopexina/genética , Hemopexina/metabolismo , Proteínas de Peixes/química , Filogenia , Genômica , Aclimatação/genética
13.
Sci Adv ; 8(51): eadc9245, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36563141

RESUMO

Anthracyclines such as doxorubicin (Dox) are effective chemotherapies, but their use is limited by cardiac toxicity. We hypothesized that plasma proteomics in women with breast cancer could identify new mechanisms of anthracycline cardiac toxicity. We measured changes in 1317 proteins in anthracycline-treated patients (n = 30) and replicated key findings in a second cohort (n = 31). An increase in the heme-binding protein hemopexin (Hpx) 3 months after anthracycline initiation was associated with cardiac toxicity by echocardiography. To assess the functional role of Hpx, we administered Hpx to wild-type (WT) mice treated with Dox and observed improved cardiac function. Conversely, Hpx-/- mice demonstrated increased Dox cardiac toxicity compared to WT mice. Initial mechanistic studies indicate that Hpx is likely transported to the heart by circulating monocytes/macrophages and that Hpx may mitigate Dox-induced ferroptosis to confer cardioprotection. Together, these observations suggest that Hpx induction represents a compensatory response during Dox treatment.


Assuntos
Antraciclinas , Cardiotoxicidade , Animais , Feminino , Camundongos , Antraciclinas/toxicidade , Antibióticos Antineoplásicos , Cardiotoxicidade/etiologia , Doxorrubicina , Hemopexina/metabolismo , Hemopexina/farmacologia
14.
Front Immunol ; 13: 999614, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341407

RESUMO

Soil-transmitted helminth [mainly Strongyloidiasis stercoralis (Ss)] and tuberculous lymphadenitis (TBL) coinfection in humans is a significant public health problem. We have previously shown that TBL+Ss+ coinfection significantly alters diverse cytokine, matrix metalloproteinase, and tissue inhibitors of metalloproteinase profiles. However, no data is available to understand the influence of Ss coinfection in TBL disease with respect to iron status biomarkers. Hence, we have studied the effect of Ss coinfection on the circulating levels of iron status (ferritin, transferrin [TF], apotransferrin [ApoT], hepcidin, hemopexin) biomarkers in TBL disease. Our results show that TBL+Ss+ and/or TBL+Ss- individuals are associated with significantly altered biochemical and hematological (red blood cell (RBC) counts, hemoglobin (Hb), hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) were decreased, and platelets were increased) parameters compared to TBL-Ss+ individuals. Our results also show that TBL+Ss+ coinfection is associated with diminished circulating levels of ferritin, ApoT, hepcidin, and hemopexin compared to TBL+Ss- individuals. TBL+Ss+ and TBL+Ss- groups are associated with altered iron status biomarkers (decreased ferritin [TBL+Ss+ alone] and increased TF, ApoT, hepcidin and hemopexin [TBL+Ss- alone]) compared to TBL-Ss+ group. The heat map expression profile and principal component analysis (PCA) analysis of iron status biomarkers were significantly altered in TBL+Ss+ compared to TBL+Ss- and/or TBL-Ss+ individuals. A significant correlation (positive/negative) was obtained among the biochemical and hematological parameters (white blood cells (WBC)/ferritin, TF, and hepcidin, mean corpuscular hemoglobin concentration (MCHC)/ferritin and hemopexin) with iron status biomarkers. Finally, receiver operating characteristic (ROC) analysis revealed that hemopexin was significantly associated with greater specificity and sensitivity in discriminating TBL+Ss+ and TBL+Ss- coinfected individuals. Thus, our data conclude that Ss coinfection is associated with altered iron status biomarkers indicating that coinfection might alter the host-Mtb interface and could influence the disease pathogenesis.


Assuntos
Coinfecção , Estrongiloidíase , Tuberculose dos Linfonodos , Humanos , Estrongiloidíase/complicações , Estrongiloidíase/diagnóstico , Ferro/metabolismo , Hepcidinas/metabolismo , Hemopexina/metabolismo , Ferritinas , Biomarcadores
15.
Biosensors (Basel) ; 12(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36291022

RESUMO

Matrix metalloproteinases (MMPs) are essential proteins acting directly in the breakdown of the extra cellular matrix and so in cancer invasion and metastasis. Given its impact on tumor angiogenesis, monitoring MMP-14 provides strategic insights on cancer severity and treatment. In this work, we report a new approach to improve the electrochemical interaction of the MMP-14 with the electrode surface while preserving high specificity. This is based on the detection of the hemopexin (PEX) domain of MMP-14, which has a greater availability with a stable and low-cost commercial molecule, as a recognition element. This molecule, called NSC-405020, is specific of the PEX domain of MMP-14 within the binding pocket. Through the covalent grafting of the NSC-405020 molecule on carbon nanotubes (CNTs), we were able to detect and quantify MMP-14 using electrochemical impedance spectroscopy with a linear range of detection of 10 ng⋅mL-1 to 100 ng⋅mL-1, and LOD of 7.5 ng⋅mL-1. The specificity of the inhibitory small molecule was validated against the PEX domain of MMP-1. The inhibitor loaded CNTs system showed as a desirable candidate to become an alternative to the conventional recognition bioelements for the detection of MMP-14.


Assuntos
Metaloproteinase 14 da Matriz , Nanotubos de Carbono , Metaloproteinase 14 da Matriz/química , Metaloproteinase 14 da Matriz/metabolismo , Hemopexina/química , Hemopexina/metabolismo , Hemopexina/farmacologia , Metaloproteinase 1 da Matriz/metabolismo , Estrutura Terciária de Proteína
16.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293475

RESUMO

Primary focal segmental glomerulosclerosis (FSGS), along with minimal change disease (MCD), are diseases with primary podocyte damage that are clinically manifested by the nephrotic syndrome. The pathogenesis of these podocytopathies is still unknown, and therefore, the search for biomarkers of these diseases is ongoing. Our aim was to determine of the proteomic profile of urine from patients with FSGS and MCD. Patients with a confirmed diagnosis of FSGS (n = 30) and MCD (n = 9) were recruited for the study. For a comprehensive assessment of the severity of FSGS a special index was introduced, which was calculated as follows: the first score was assigned depending on the level of eGFR, the second score-depending on the proteinuria level, the third score-resistance to steroid therapy. Patients with the sum of these scores of less than 3 were included in group 1, with 3 or more-in group 2. The urinary proteome was analyzed using liquid chromatography/mass spectrometry. The proteome profiles of patients with severe progressive FSGS from group 2, mild FSGS from group 1 and MCD were compared. Results of the label free analysis were validated using targeted LC-MS based on multiple reaction monitoring (MRM) with stable isotope labelled peptide standards (SIS) available for 47 of the 76 proteins identified as differentiating between at least one pair of groups. Quantitative MRM SIS validation measurements for these 47 proteins revealed 22 proteins with significant differences between at least one of the two group pairs and 14 proteins were validated for both comparisons. In addition, all of the 22 proteins validated by MRM SIS analysis showed the same direction of change as at the discovery stage with label-free LC-MS analysis, i.e., up or down regulation in MCD and FSGS1 against FSGS2. Patients from the FSGS group 2 showed a significantly different profile from both FSGS group 1 and MCD. Among the 47 significantly differentiating proteins, the most significant were apolipoprotein A-IV, hemopexin, vitronectin, gelsolin, components of the complement system (C4b, factors B and I), retinol- and vitamin D-binding proteins. Patients with mild form of FSGS and MCD showed lower levels of Cystatin C, gelsolin and complement factor I.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefrose Lipoide , Humanos , Nefrose Lipoide/diagnóstico , Nefrose Lipoide/metabolismo , Nefrose Lipoide/patologia , Glomerulosclerose Segmentar e Focal/metabolismo , Cistatina C/metabolismo , Proteômica , Gelsolina/metabolismo , Proteoma/metabolismo , Hemopexina/metabolismo , Vitronectina/metabolismo , Fator I do Complemento/metabolismo , Vitamina A/metabolismo , Biomarcadores , Esteroides , Vitamina D
17.
Infect Immun ; 90(10): e0032922, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36169312

RESUMO

Bloodstream infections (BSIs) caused by Pseudomonas aeruginosa are associated with a high mortality rate in the clinic. However, the fitness mechanisms responsible for the evolution of virulence factors that facilitate the dissemination of P. aeruginosa to the bloodstream are poorly understood. In this study, a transcriptomic analysis of the BSI-associated P. aeruginosa clinical isolates showed a high-level expression of cell-surface signaling (CSS) system Hxu. Whole-genome sequencing and comparative genomics of these isolates showed that a mutation in rnfE gene was responsible for the elevated expression of the Hxu-CSS pathway. Most importantly, deletion of the hxuIRA gene cluster in a laboratory strain PAO1 reduced its BSI capability while overexpression of the HxuIRA pathway promoted BSI in a murine sepsis model. We further demonstrated that multiple components in the blood plasma, including heme, hemoglobin, the heme-scavenging proteins haptoglobin, and hemopexin, as well as the iron-delivery protein transferrin, could activate the Hxu system. Together, these studies suggested that the Hxu-CSS system was an important signal transduction pathway contributing to the adaptive pathogenesis of P. aeruginosa in BSI.


Assuntos
Infecções por Pseudomonas , Sepse , Camundongos , Animais , Pseudomonas aeruginosa/metabolismo , Hemopexina/metabolismo , Haptoglobinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Heme/metabolismo , Transdução de Sinais , Ferro/metabolismo , Hemoglobinas/metabolismo , Transferrinas/metabolismo
18.
Biophys J ; 121(20): 3896-3906, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36056555

RESUMO

The adaptability of proteins to their work environments is fundamental for cellular life. Here, we describe how the hemopexin-like domain of the multifunctional blood glycoprotein vitronectin binds Ca2+ to adapt to excursions of temperature and shear stress. Using X-ray crystallography, molecular dynamics simulations, NMR, and differential scanning fluorimetry, we describe how Ca2+ and its flexible hydration shell enable the protein to perform conformational changes that relay beyond the calcium-binding site and alter the number of polar contacts to enhance conformational stability. By means of mutagenesis, we identify key residues that cooperate with Ca2+ to promote protein stability, and we show that calcium association confers protection against shear stress, a property that is advantageous for proteins that circulate in the vasculature, like vitronectin.


Assuntos
Cálcio , Vitronectina , Cálcio/metabolismo , Vitronectina/química , Vitronectina/metabolismo , Ligação Proteica , Hemopexina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Conformação Proteica
19.
Kidney Int ; 102(6): 1320-1330, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36007598

RESUMO

Hemopexin, a heme scavenging protein, accumulates in the kidneys during acute kidney injury (AKI). However, the function of this accumulated hemopexin in the kidney is unclear. In both the cisplatin-induced and the unilateral kidney ischemia-reperfusion injury models of AKI, we found accumulation of hemoglobin and hemopexin in the kidneys localized to the proximal tubules. Next, hemopexin wild-type and knockout mice were compared in both AKI models and hemopexin wild type mice had significantly worse kidney injury. Furthermore, there was increased kidney expression of kidney injury molecule-1 (a biomarker of AKI) and heme oxygenase-1 (an indicator of oxidative stress) in hemopexin wild type compared with knockout mice in both models of AKI. Next, the interaction of hemopexin and hemoglobin in vitro was investigated using cultured proximal tubular cells. Co-incubation of hemopexin with hemoglobin resulted in hemoglobin deposition and exaggerated hemoglobin-induced injury. Deferoxamine, an iron chelator, and ferrostatin-1, a ferroptosis inhibitor, inhibited this deleterious effect of hemoglobin and hemopexin in proximal tubular cells, implicating iron toxicity in the mechanism of hemopexin mediated injury. Furthermore, the protective effect of deferoxamine in cisplatin-induced AKI was apparent in hemopexin wild type, but not in hemopexin knockout mice, further implicating hemopexin as a mediator of iron toxicity in AKI. Thus, our findings demonstrate that hemopexin accumulates in the kidneys and worsens kidney injury in AKI by increasing hemoglobin deposition on proximal tubular cells to exaggerate hemoglobin-induced cell injury.


Assuntos
Injúria Renal Aguda , Hemopexina , Camundongos , Animais , Hemopexina/metabolismo , Cisplatino/toxicidade , Desferroxamina , Injúria Renal Aguda/etiologia , Túbulos Renais Proximais/metabolismo , Rim/metabolismo , Camundongos Knockout , Hemoglobinas/metabolismo , Ferro/efeitos adversos , Camundongos Endogâmicos C57BL , Túbulos Renais/metabolismo
20.
Dev Comp Immunol ; 135: 104475, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35732223

RESUMO

Hemopexin is a vital glycoprotein for processing excessive iron in blood and functions as an iron scavenger in mammals. Teleosts however, unlike mammals, have two known hemopexin paralogs called warm temperature acclimation-related 65 kDa protein (Wap65-1 and Wap65-2, collectively termed Wap65s). Although Wap65s in rainbow trout have been considered notable biomarkers with significantly higher and/or lower expression under conditions of stress or disease, the individual roles, similarities and differences between the two paralogs are not well known. The aim of this study was to gain an understanding of the characteristics and functions of trout Wap65s from the perspective of iron-metabolism, physiological roles, and relevant immunological responses. The expression of Wap65-1 and -2 in this study was determined in the face of challenges by Aeromonas salmonicida, infectious hematopoietic necrosis virus (IHNV), and iron-dextran. Immuno-histochemistry (IHC) was employed to localize the major cell types for Wap65-2 expression, and trout leukocytes were isolated and incubated with LPS and OxLDL for comprehending the immunological characteristics of Wap65-2. We demonstrate that Wap65-1 is expressed only in the liver but Wap65-2 is systemically expressed in most organs and tissues. Interestingly, Wap65-1 expression was not significantly changed under A. salmonicida and iron-dextran administration, but was significantly decreased under IHNV. In contrast, Wap65-2 was up-regulated in all challenged groups, however with different expression patterns in the blood and liver. These results suggested that the two paralogs may participate in different biological roles. IHC showed that Wap65-2 antibody had high affinity for leukocyte-like cells, and macrophages but not lymphocytes significantly increased expression under LPS and OxLDL stimulation. These results support the conclusion that trout Wap65-2, not Wap65-1 may have conventional hemopexin functions such as reported in mammals including effects on iron metabolism, inflammation, and acute-phase protein.


Assuntos
Doenças dos Peixes , Oncorhynchus mykiss , Aclimatação , Sequência de Aminoácidos , Animais , Dextranos , Proteínas de Peixes/metabolismo , Hemopexina/química , Hemopexina/genética , Hemopexina/metabolismo , Ferro , Lipopolissacarídeos , Mamíferos , Filogenia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA